

Evaluation ENERBUILD-Tool – existing buildings Kindergarten Mühlen in Taufers

1 Basic information about the building

Name of the building	Kindergarten Mühlen in Taufers
Address of the building	JBeikircher-Allee 28, 39032 Mühlen (Bz) Italy
Owner/investor	Municipality of Sand in Taufers
Year of construction	2007
Planner	Arch. Johanna Niederkofler and Arch. Thomas Winkler
Building type	Massive construction
Building method	Concrete and brick walls with external insulation
Number of buildings	1
Number of levels above earth	2
Number of levels underground	1
Kind of the public use	Educational use: school with multifunctional rooms
Effective area for public use in m ² (net)	1350 m²
Additional private uses	1
Effective area for private use in m ² (net)	/
Total effective area in m ²	1350 m²
Source of energy for heating	Electric energy and geothermal energy
Heating system	Electrical floor heating system, electric post heating of air
Water heating system	Peripheral electric DHW boilers
Date of the building evaluation	2011

2 Execution of the building evaluation with the ENERBBUILD tool

Responsible Organisation: Eurac research, Institute for Renewable Energy

Contact person: Hannes Mahlknecht

Telephone:0039 0471 055656 Email:hannes.mahlknecht@eurac.edu

3 Results

Nr. Title Must criteria (M) max. points points
--

Α		Quality of location and facilities	max. 100	82
А	1	Access to public transport network	50	32
А	2	Ecological quality of site	50	50


В		Process and planning quality		max. 200	130
В	3 1 Decision making and determination of goals			25	5
B 2 Formulation of verifiable objectives for energetic and ecological measures M 20		20			
В	B 3 Standardized calculation of the economic efficiency		М	40	0
В	B 4 Product-management - Use of low-emission products			60	30
В	5 Planning support for energetic optimization			60	60
В	6	nformation for users		25	15

С		Energy & Utilities (Passive house)		max. 350	336
С	1	Specific heating demand (PHPP)	М	100	76
С	2	Specific cooling demand (PHPP)	М	100	100
С	3	Primary energy demand (PHPP)	М	125	125
С	4	CO2-emissions (PHPP)		50	35

D		Health and Comfort	max. 250	140
D	1	Thermal comfort in summer	150	65
D	2	Ventilation - non energetic aspects	50	25
D	3	Daylight optimized (+ lightening optimized)	50	50

Е	Building materials and construction		max. 200	129
 DI3_{TGH-Ic} ecological index of the thermal building envelope (respectively OI3 of the total mass of the puilding) 			200	129
Sum max. 1000 81			817	

Dining-hall

Stairs to classroom

4 Conclusions from the building evaluation with the ENERBUILD-Tool

a) Generally

The evaluation seems feasible and practicable in an appropriate working time. The most problematic part was to gather all necessary documents and information. For the evaluation part B, an interview with the planner was done to figure out all information.

b) About the planning process

For the evaluation of the planning process written documentations are required, which we could not gather or do not exist. The architect in this case was directly commissioned by the municipality. The energetic target of the building was fixed in an early planning stage to Climahouse A. Some variants about the heating system were elaborated and especially paid attention to use ecological construction materials.

c) About the building itself

The building was evaluated with 817 points and awards the ENERBUILD silver certification label. This grading is quite realistic and gives a good statement about an ecological overview of the building.

d) About the evaluation process

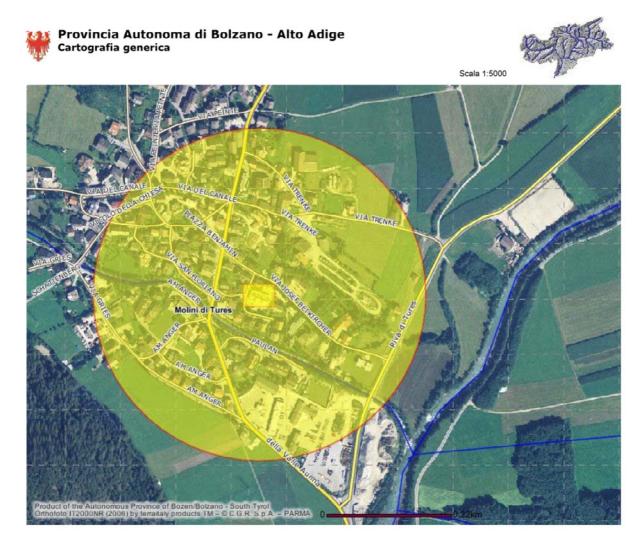
Problems during the evaluation problems were met in following:

Criterion B3: The economic efficiency was not evaluated within this project by the planners.

Criterion D2: As sound-measurements could not be done, an evaluation was done by interviewing the architect and figuring out the employed measures to avoid sound transmissions of the ventilation machine.

5 Suggestions for improvement of the ENERBUILD-Tool

Criterion D2: A simplified method for calculating the sound transmission should be implemented into the ENERBUILD manual.



5. Annex A: Detailed evaluation of criteria

A Quality of location and facilities

A2 Access to public transport network

The public transport was evaluated within the surrounding bus stations in a diameter of 300 meters. There are two bus lines with a total of four bus-stations. Two of them have a half hourly frequency and two an hourly frequency serving the school with the next villages.

	Punkte
Access to public transport network	max. 50
Points for each bus-station in a radius of 300 m with hourly frequency or shorter frequency	each 6
Points for each bus-station in a radius of 300 m with half-hourly frequency or shorter frequency	each 10

Points for each train-station in a radius of 500 m with hourly frequency or shorter frequency	each 5
Points for each train-station in a radius of 500 m with half-hourly frequency or shorter frequency	je 8

EB-points:	Max. points:	Obtained points
	50	32

A2 Ecological quality of site

The function of the site was not changed. The ancient school was demolished and a new school reconstructed on the same surface.

• Therefore criteria a1 – area with zero ecological value:

Performance score	Calculated Ecological value of land
-1 – negative	>5
0 – standard	5
3 – good	2.6
5 - excellent	1

Performance score 5

EB-points:	Max. points:	Obtained points	
	50	50	

B Process and planning quality

B1 Decision making and determination of goals

A documentation of the decision making process exists partially. Different variants have been studied and evaluated in the planning phase. The 0-variant was evaluated and considered as not relevant.

Criteria	Max points	Obtained points
Exists a documentation of the decision making process	10	0
Did variants be considered and evaluated?	5	0
Evaluation of the 0-variant	5	5
Exists a documentation of the evaluation scheme of the variants	4	0
Does it contain:		
Urbanism	2	
Access to public transport	2	
Use of area and floor	2	
Energy efficiency	2	
Ecological use of materials	2	

EB-points:	Max. points	Obtained points
	25	5

B2 Formulation of verifiable objectives for energetic and ecological measures

Definition of minimum criteria by fixing some limit values:

- The municipality fixed at the beginning of the planning process a limit for the energy consumption for heating. They defined the CasaClima A limit with 30kWh/m²a as minimum standard for the new kindergarten.
- Requirements for the primary energy consumption of heating where fixed within the passivehouse label with 110 kWh/m²a. When the decision was taken to plan a passive house, the heating system was changed from a pellet plant to a heat pump with a ground heat exchanger. As a consequence the furnished energy for the heat pump should be delivered by a photovoltaic plant in order to become a net-zero energy building.
- The air tightness was fixed within the passive house label and the CasaClima certification: n50,lim < 0,6 h(-1)

- Efficiency of the ventilation system: the tenant and planner choose a product which was certified by the passive-house institute with a high efficiency.
- The use of regional products should be taken into account. The stones from the excavated material were used to build up the exposed brickwork of the groundfloor.

EB-points:	Max. points:	Obtained points
	20	20

B3 Standardized calculation of the economic efficiency

The live cycle costs and the economic efficiency were not calculated in the planning phase, but it where chosen materials with a long life time and low costs of maintaining (windows and flooring in oak tree, coatings).

EB-points:	Max. points:	Obtained points
	40	0

B4 Product-management-Use of low-emission products

The planner and the municipality decided from beginning on, that products with low emission should be used (insulation material, floorings, windows).

Criteria	Max points	Obtained points
Exists a documentation of the ecological optimization of the materials during the planning phases	10	0
The tender for all craftworks have been declared ecologically? Criteria like in baubook. 100% of works 90% of works 70% of works	20	0
Were all products of all craftworks declared? 100% 90% 70%	30 20 10	20
Does un ecological building		10

supervision exist? Did the supervisor		
do regularly inspections on the		
building site?		
- Total construction process		
- Partially construction process	20	
	10	
	10	

EB-points:	Max. points:	Obtained points
	60	30

B5 Planning support for energetic optimization

The energetically aspects during the planning and construction phase were considered and optimized.

The independent institution (Eurac research) analyzed and evaluated the effective energy consumption for heating.

Criteria	Max points	Obtained points
Compilation of a space allocation plan	5	5
Roomly distribution of air-flows as calculated in PHPP	5	5
Establishment of internal heat gains	5	5
Consideration of thermal bridges with 0,003 W(m ² K)	5	5
Description of energetically requirements (Uw,Ug, g-value, effectiveness heat recovery) in tendering	5	5
Control of energetically aspects in offers	5	5
Support of site manager in energetically aspects with meetings on building site	5	5
Protocol of the initial measurement of the ventilation system	5	5
Protocol of the blower door test	5	5
Protocol of hydraulically adjustment of heating system	5	5

Compilation of energy requirements calculation after the construction phase, blower door test	5	5
Independent evaluation of the energy requirement calculation	5	5

EB-points:	Max. points:	Obtained points
	60	60

B6 Information for users

A user manual does not exist for the building. However when the building was delivered an informative meeting was held to inform the teachers and pupil about the use of shadings and window ventilation. An alarm signalization informs them about dysfunctions of the heating system. At the same time technicians of the maintaining enterprise are alarmed. The enterprise takes care of the maintenance of the entire building equipment and appliances.

EB-points:	Max. points:	Obtained points
	25	15

C Energy & Utilities (Passive house)

C1 Specific heating demand (PHPP)

Specific space heat demand: 13kWh/m²a

EB-points:	Max. points:	Obtained points
	100	76

C2 Specific cooling demand (PHPP)

Specific cooling demand: 0 kWh/m²a

EB-points:	Max. points:	Obtained points
	100	100

C3 Primary energy demand (PHPP)

Specific primary energy demand: 89 kWh/m²a

EB-points:	Max. points:	Obtained points
	125	125

C4 CO2-emissions (PHPP)

CO2-emissions: 11kg/m²a

EB-points:	Max. points:	Obtained points
	50	35

Г

D Health and Comfort

D1 Thermal comfort in summer

Criterion	Points (max 150)
Building with less than 35 % Windows surfaces and without active cooling system	50
Analysis based on ON B8110-3	50 50
Or analysis OIB RL-6; KB* < 0,4 kWh/m³a Or analysis OIB RL-6; KB* < 0,6 kWh/m³a	35 65
Or Analysis PHPP, Überschreitung 26 °C < 5 % Dynamical building simulation (at least for critical rooms) considerating the local climate, flexible shading systems and the respected usage of the buliding.	
exceeding 26 °C < 5 % without activ coling system (e.b.free night cooling) exceeding 26 °C < 10 % without activ coling system (e.b.free night cooling) exceeding 26 °C < 3 % with active cooling system	150 50 75 75
Analysis to prevent air currents (v < 0,1 m/s, ΔT < 2 K at the domicile)	13

The overheating analysis was made with the software PHPP.

The result of the overheating frequency is: 0%

EB-points:	Max. points:	Obtained points
	150	65

D2 Ventilation – non energetic aspects

Criterion	Points (max 50)
Sound transmission calculation (depending on the room use), prognostic of expected sound presser level $L_{A,nT}$ < 30 dB and $L_{C(50-4000),nT}$ < 50 dB	25
Sound emission calculation on most exposed working place $L_{A,nT}$ < 30 dB and $L_{C(50-4000),nT}$ < 50 dB	40
Sound emission calculation on most exposed working place $L_{A,nT} < 30 \text{ dB}$ und $L_{C(50-4000),nT} < 50 \text{ dB}$	50

EB-points:	Max. points:	Obtained points
	50	25

Product sheet of mechanical Ventilation Heat Recovery Unit campus 500 DC

minimum ventilation (300 m³/h) 35,6 dB(A)

normal ventilation (500 m³/h) 37,7 dB(A)

maximum ventilation (600 m³/h) 39,7 dB(A)

The passive house certificate declares for this unit the usage of acoustical absorbers in room with air inlets and outlets. The installation of the ventilation machine has to be in a separated sound decoupled room. All this requirements were respected and therefore awarded 25 points.

D3 Daylight optimized (+ lightening optimized)

The daylight factor was calculated with following formula from UNI EN 15193, 2008 for each room:

Rooms	Daylight factor [%]
Recreation and service rooms, underground west	3.72
Classrooms , low ground west	9.93
Classrooms , low ground west	11.32
Art room, low ground west	7.72
Other, west	5.09
Classrooms , 1st ground east	9.92
Classrooms , 1st ground east	11.30
recreation and service rooms, 1st ground east	1.16
Other, 1st ground east	1.68
Classrooms , low ground south	3.79
Classrooms , low ground south	3.79
Classrooms ,1st ground south	3.72
Classrooms , 1st ground south	3.72
Other, south	2.32
Other, south	0.72
Multi-functional room, 1st ground north	3.13
Other, underground north	0.68
Other, low ground north	1.05
Other, 1st ground north	0.90
Other, horizontal	24.7

The average daylight factor was calculated with following formula

Result: Mean daylight factor

5,1

EB-points:	Max. points:	Obtained points
	50	50

E Building materials and construction

E1 $OI3_{TGH-Ic}$ ecological index of the thermal building envelope (respectively OI3 of the total mass of the building)

OI3 _{TGH,BGF}= 107 points

= 2 *(0,0007 * 3 - 2-0,623 * 3 - h+123)

EB-points:	Max. points:	Obtained points
	200	129